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The system of transfer equations in a two-phase medium reduces to a single effective 
equation which can be analyzed without significant difficulties (in comparison with 
the given system), with the accuracy of the problem formulation being practically 
preserved. 

i. In the analysis of transfer processes in a heterogeneous medium the latter is often 
represented as a set of coexistent continua. Transfer is described separately for each con- 
tinuum with account of heat and mass exchange between them [1-4]. A solution of the ob- 
tained system of equations even for the quasistationary representation of heat and mass ex- 
change, as a rule, creates serious difficulties. In [5, 6] a system of transfer equations 
is proposed which reduces to a single equivalent equation, the analysis of which can be readily 
carried out. 

We consider the following system of transfer equations: 

(o ) 
a - - ~  q-  u �9 V 81 = ~Al,%1 +09. - -  ~1, O~Ot - -  ~ A ~  --- t%. -~ ~ l .  ( 1 ) 

For the problem of heat exchange, @i and %2 are dimensionless phase temperatures; E 
is the ratio of the heat conductivities; u is the velocity of motion of the first phase, the 
second phase is at rest (for example, the heating of a granular mass by the flow of liquid). 
When u = 0, the system (i) describes the filtering of the liquid in a so-called fissured and 
porous medium [3] (the medium with two systems of channels with significantly different per- 
meabilities, the ratio of permeabilities ~ << i), %i, the liquid pressure in channels (for 
gas, the square of the pressures) The linearized equations of the filtering in media with 
double porosity with account of nonlinear elastic effects [7, 8] in the deformed fissured 
and porous medium [4] and the equations of the filtering of gas in the porous medium with 
account of sorption [9, I0] are similar in form to Eq. (I). The parameters a ~ 0, v > 0 are 
determined by the physical properties of the medium. 

Below we consider the case g << i, which is a rather general one for the problems of 
transfer. The corresponding problems of filtration are presented above. In the problems 
of heat exchange in a dispersive medium the contact conductivity (e = 0) is usually neglected. 
Situations are, however, possible when heat transfer by particles should be taken into ac- 
count (for example, in vacuum treatment). Examples of solutions of (i) are known in the 
literature (see e.g., [ii]). 

In the present work, according to the method given in [5], system (i) reduces to a single 
effective equation. For the case when the characteristic time of the variation of the average 
characteristics considerably exceeds the characteristic time of the local variation of the 
process [in (i) t >> i], approximations to the solution are of a simple form convenient for 
practical applications. In actuality, the indicated case occurs, for example, for the quasi- 
stationary formulation of the problem (the selection of heat exchange between the phases in 
the form 92--%1, etc.). 

2. Letting in (i) 

= ~ ' ~ i ~ ,  (2) 
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we obtain for the coefficients ~in the equations 

(aO/Ot Jr u. V) ~1~ - -  'VA~lr~ - -  02n  + ~ l n  = O, 

Ol~'2,z/Ot "-}- 0'2~ - -  l~'lt t = h~q~2,n_ 1 (n  = O, 1 . . . .  ; 0 2 , _  1 =:  0).  

After substitution 

the second equation in (3) assumes the form 

O~2~/Ot q- ~ ,  - -  % ~  = O, 

which l e a d s  to  t h e  f o r m a l  e x p a n s i o n  [5 ] :  

(3)  

(4) 

~}2n = K%n, K------ 2 ( -1)s  OS/Ots" 
s~0 

(5 )  

With account of (5), the first equation in (3) is written as follows 

L~I,~=K(AOe,,~_~) (n-~0 ,  1 . . . .  ), 

oo 

L ~ Ll - -  ~ (--1)  ~ OS / Ot s, LI-----(1 + a) O / Ot + u . v - - v  h .  
s=---2 

(6) 

By multiplying the n-th equation (6) by en and summing over n, with regard to (2), we 
obtain the equivalent equation 

oo 

L~t = F (~'a), F ('0'1)------ ~ ,  gilA(tO (/((t~-l-l)'b~l):, 
n= 1 

(7 )  

where the symbols A(n) and K(n+2) designate n- and (n + l)-fold application of the operators 
A and K, respectively. For E = 0 Eq. (7) coincides with the analogous equation in [5]. 

We apply to (7) the Laplace transform in time. The operator K(n) can be shown to assume 
the form of i/(i + p)n, and Eq. (7) for the case of constant velocity u of the first phase 
assumes the form 

w h - ~  1 - -  a b  (p) ~-t - -  u. V< = --  2 -~'-J ,,=1 (1--[-p)n+J AUO~l, 

b (p) = p (p + d)/(1 q- p), d = 1 + l / a  (8) 

The following should be stressed. Despite the use of the formal expansion (5), Eq. (8) 
in final form is written for arbitrary values of the parameter of transformation p. There- 
fore, Eq. (8) coincides with the analogous equation obtained directly from (i) after eliminat- 
ing 82 and applying the Laplace transform. Therefore, for the initial problem under con- 
sideration, solution (8) is exact. 

The determination of the invers~ transform for the solution of Eq. (8) in the general 
case causes considerable difficulties. In correspondence with the approach [5], different 
approximations of the process can be constructed, retaining in (7) derivatives of different 
orders with respect to time. The zeroth approximation corresponds to the stationary case. 
The first approximation is described by an equation of parabolic type: 

L~#, = F(#,),  K-~  1 - - ~ o t ,  (9 )  

the second approximation is described by an equation of elliptic type*: 

( L ,  - -  0z/0l z) 01 = F (Or), K ~ 1 - -  O/Ot + 02~Or 2. (10)  

*Under certain assumptions heat transfer in a dispersive layer can be described by a hyper- 
bolic equation [12]. 
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The procedure for retaining successively the derivatives with respect to time of dif- 
ferent orders (beginning from the first one) in (7) corresponds to the expansion of the solu- 
tion of Eq. (8) in a series in the parameter of transformation p, which is possible under 
the condition that t >> i (p << i). As is pointed out above, this condition holds actually 
for the quasistationary definition of the problem. 

By applying to (9) and (i0) the Laplace transform in time and carrying out the inversion, 
one can find the approximations mentioned above to the solution with an arbitrary degree of 
precision with respect to g. The suitability of the approximations built up is determined 
by checking them against the exact solution, the inverse transform of the solution of Eq. (8). 

Further we assume that u = 0 (this corresponds, for example, to the cases of filtration 
mentioned above) and limit ourselves to one-dimensional processes. 

3. For the boundary conditions 91 = 92 = ~, with x = 0 and zero initial conditions (for 
example, the problem on starting a gallery in a semiinfinite region and heating the mass by 
the flow of liquid), solution (8) with accuracy to E 2 is of the form 

pg~ = ~,  [1 + 8~ (p) x/(2~ (1 + pp) + 8~ ( . . . )  + . . . ]  exp (--l~ (p) x), 

(p) ,-  ]/~y(p)/~. 
(ii) 

The application of the Laplace transform in time [13] to (9) and (i0) does not cause 
difficulties. We list the final results: 

the solution of Eq. (9) 

ff--!-1 = erfc ~ %- s "~ exp (_~z) ( 1 2~2-  ! 

t 
x V / ' I  -]-a (12) 

the solution of Eq. (i0) 

ffl = e r f c ~ - -  e ~exp(--~2) I 2~ z - 1  @ ~: (I 4(15 ! 4a+a)l(2~2__l))] ' (13) 

where erfc~ = 1 -- erfE is an error function. 

For an arbitrary boundary condition 91(0, t) = f(t), the solution is defined by the 
Duhamel integral 

t 

j~ e,(x, t-~)df(f~) d~. (14) 
o do) 

The function 92 is determined from Eqs. (2), (5), (4). 

When E = 0, as is shown in [5], functions (12), (13) represent odd and even with re- 
spect to x approximations of the solution of system (i) [or of the inverse transform (ii)]. 
It can be determined in a similar way that the terms of the order of g are approximated 
evenly. 

In correspondence with (12)' (13), we write down for the process of filtration the ap- 
proximation of the yield (for the problem of heat exchange, the approximation of heat flow) 

q= (Offl/Ox+eOO~/Ox)~=o: 

parabolic approximation 

q -= ____  
v l 

elliptic approximation 
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q . . . .  -2- |, ~ 2 ( l @ a ) t  @8 2 - - - -  ~- 5 + 4 a +  v 4 ( l + a ) t  I z 2 - ~  �9 (16) 

For practical purposes when t >> 1 it suffices to use, according to (15), (16), the expression 
for the yield 

~ f l  + a  (17) q ~ --@, ~ " 

Accord ing  to  ( 1 2 ) - ( 1 7 ) ,  when t >> 1 t h e  f i l t r a t i o n  in  t h e  f i s s u r e d  and porous  medium 
or filtration in the porous medium with consideration for sorption occurs in the way similar 
to that in the porous medium (without sorption) with an effective coefficient of piezocon- 
ductivity ~= v/(l + a) (with the exponential approach to the self-similarity regime), which 
corresponds to theoretical and experimental results [14-16]. Therefore, the equivalent equa- 
tion describes qualitatively correctly the given cases of transfer and allows one to evaluate 
readily the effective parameters of the system, which is of interest by itself. We remark 
that the effective piezoconductivity of the system is always less than the piezoconductivity 
of fissures (according to the chosen designations the latter is equal to v) and depends on 
the parameter a. 

As an example, we estimate the parameter a for filtering in the elastically compressible 
fissured and porous medium. According to [4]: 

a ~,~ . ~  Ira; (p~'- ~)(G + G)I -~, 

where ml ~ and m2 ~ are porosities of fissures and blocks at the initial formational pressure 
p~ Sp and 6m, coefficients of compressibility of the liquid and pores of blocks; o, the 
critical pressure (when Pl = o the fissures are closed). In actuality, p~ -- o ~ (105-107 ) N/m 2. 
Assuming for the parameters usual values [17! ~p ~.(10-s'10 -s) m2/N, 6m ~ 10-s m2/N, m1~176 ~ 
10-J (j = i, 2 .... ), we determine a ~ (101-3-10a-J). For the model [3] of the fissured and 
porous medium a << 1 due to the assumption that fissures are weakly compressible. 

In order to estimate the accuracy of the approximations constructed (12), (13) we com- 
pare for E = 0 the corresponding expressions for the yield (15), (16) with the exact expres- 
sion determined from (ii): 

'+j~ j" exp(pt) ~(p) dp. (18) 
1 

-- exp (pt) P 2a i  v-~oo p q 2~i  v_oo " x= 

Inside of the selected contour of integration (Fig. i) the integrand in (18) is single- 
valued and analytic (p = 0, -i, --d, ~ are the branching points); therefore, 

C R C(1) Cf2) p(3) 1 I1 "'r 

where I and I I  a r e  t h e  h o r i z o n t a l  edges  o f  t he  cu t  ( t h e  d i r e c t i o n  of  p a s s - a r o u n d  o f  t h e  c o n t o u r  
is shown by an arrow). All the values in Figs. 1-3 are dimensionless. 

By evaluating circular integrals in a regular way [18], one can demonstrate that 

lim [ =l i ra  ,I = 0  ( i = l ,  2, 3). 
a ~  ~.~ r~0 c~, '~ 

Taking into account that on the lower edge of the cut p = x exp (--~i), on the upper cut, 
p = xexp(~i), one can find that 

i - - r  R 

l 1 1 r d + r  

O(x, O = V  / x- - -d  x (x ---I) exp (-- xt). 
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By taking the limit in (19) with r ~ 0, R + ~, we finally obtain 

f ] oo V"( ) v ' ~ - - - - U -  7_- j 6(x, t)dx4- j 6(x, Odx. (20) 
0 d 

In the general case, dependence (20) q = q(t) is calculated numerically. When a >> 1 we obtain 
d = 1 and 

q .~ -- _ _  ~,  ]/ / /---~i'exp(--xl)  dx__ ~, / a 
a r x art ' 

which coincides with approximations (15), (16) (Fig. 2). 

4. In the problem on starting a bore with a constant yield q we neglect the flow on 
blocks with the purpose of simplifcation [in (i) ~ = 0]. The Laplace transform of the solu- 
tion of the equivalent equation (7) is of the form (it coincides with the corresponding ex- 
pression [14] for the porous medium): 

where K 0 and K I 
given in (11). 

~ = .  q K. (~ (p) r)lKt ([J (p) ro), 
prop (P) 

are the modified Bessel functions; r0, a bore radius; the expression ~(p) is 
By using the condition ~(p)r 0 << 1 and making substitution 

Ka ([~ (P) %) ~ 1/([J (p) %), 

we obtain 

p ~  = - -  q /<o  (1~ ( p )  r ) .  (21) 

By expanding the right-hand part in (21) in a series of powers p << i, we determine the 
analog of Eqs. (15), (16): 

_ p V ~  ] / / l + a  P~' i(o (VS~) - ~(, ( F ~ )  + . -  6 = r q 2(1§ ' 'V 

The inverse function is determined from the expression: 

~2 
2t~, = Ei (-- ~z) _ _  exp (-- ~z) 4 - . . .  ~ Ei (-- ~z), 

q VU + a) t 

r i/// 1 4- a 
"~ = - i -  , , t  ' 

(22) 

where Ei(--~ 2) is an integral exponential function. According to (22), a bore pressure changes 
in time according to the law: 

__ 2~t(r  o, l) In 2.25t + l n v .  (23) 
q (1 + a)r~ 

For an arbitrary boundary condition q = f(t) the solution is written similarly to (14). 

The efficacy of approximation (22) can be estimated by comparing variation in the bore 
pressure (23) with a similar relationship (exact), determined from (21): 

v~!~176 ( __~_) 81(ro, 0 - - 0 4 -  1 P q 2a~- J. r In [3(p) dp. (24) 

When writing (24) we used an asymptotic approximation K0(z) = --C -- in (z/2) for z << i, where 
C = 0.5772 is Euler's constant; the integration contour is shown in Fig. 1. When a >> 1 de- 
pendences (23) and (24) coincide. 
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Integration countour for calculating integrals (18), (24). 

Dependence of the gallery yield on time: a = 0.i (i), i0 (2); 
solid lines, parabolic approximation; dashed lines, elliptical approxi- 
mation. 

Fig. 3. Dependence of the yield on depression. 

5. We show how to apply the equivalent equation to nonlinear problems on the example 
of the filtration in the elastic-compressible fissured and porous medium [4]. For this case 
the parameter v in (i0) characterizes the variable (due to compressibility) permeability of 
fissures: 

(1 - -  ~)~ = Vo ~ v = (1 + ~ ) ~  ~ 1, 

where a = (p0 _ p0)/(p0 _ o), 0 < ~ < i is a dimensionless depression* (P0 is a dimensional 
face pressure). 

Letting in (16) v 0 ~ ~ ~ I, one can estimate the interval of variation of the gallery 
debit for a nonlinear system (dashed region in Fig. 3) and, by using experimental data, draw 
a conclusion on expediency of the linearization of the problem. It is known from the ex- 
perimental data [16] and the analysis of a stationary case [19] that, when the depression 
increases, the debit increases and reaches a saturation state by the moment when fissures 
close, any further increase in debit is possible at the expense of blocks with small per- 
meability only. On the basis of that one can conclude the following. 

For sufficiently small values of depression (while fissures are weakly compressible) 
the dashed region in Fig. 3 is narrow; therefore, the debit of the nonlinear system can be 
assumed to be equal to the debit of the porous medium with the permeability of fissures 
(straight line v = i). For example, when ~ ~ 0.125 an error in determining the debit does 
not exceed 20%. When the depression increases, the interval of variation in debit increases 
sharply; therefore, the error in evaluating the debit on the basis of a linearized system 
can appear to be intolerably large. An analogous conclusion can be drawn with regard to the 
determination of the heat flow in the problem of heat exchange. 

The same conclusion follows on the basis of (22), (23) for the problem on starting a 
bore with a constant debit. For small depressions (v = i) the curves of the pressure re- 
covery can be interpreted as for the porous medium. When v decreases, the error in deter- 
mining parameters of a collector becomes uncontrolled. 

NOTATION 

~, t, x, u, dimensionless temperature (pressure), time, coordinate, velocity; ~, the 
value of x = 0; a, e, v, dimensionless parameters in (i); d, parameter in (8); $, self-sim- 
ilarity variable; q, debit (heat flux); • piezoconductivity; m ~ porosity at the initial 

pressure p~ ~_, ~m, compressibility factors of liquid and block pores; o, critical pressure; P 
~, dimensionless depression; p, parameter of the Laplace transform; b(p), function in (8); 

*The case ~ = i (p0 = 0 and the fissures are joined in a zone near the face) is ignored, since 
<< I. 
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~(p), in (ii), r0, dimensionless radius of a bore; K, operator in (5); L, L I, operators in 
(6); F(%z), function in (7); G(x, t), function in (20); V, gradient; 4, the Laplace operator. 
Indices: I, 2, refer to fissures and blocks; a superscript bar, the Laplace transform. 
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